// Copyright 2023 The Gitea Authors. All rights reserved. // SPDX-License-Identifier: MIT package eval import ( "fmt" "strconv" "strings" "code.gitea.io/gitea/modules/util" ) type Num struct { Value any // int64 or float64, nil on error } var opPrecedence = map[string]int{ // "(": 1, this is for low precedence like function calls, they are handled separately "or": 2, "and": 3, "not": 4, "==": 5, "!=": 5, "<": 5, "<=": 5, ">": 5, ">=": 5, "+": 6, "-": 6, "*": 7, "/": 7, } type stack[T any] struct { name string elems []T } func (s *stack[T]) push(t T) { s.elems = append(s.elems, t) } func (s *stack[T]) pop() T { if len(s.elems) == 0 { panic(s.name + " stack is empty") } t := s.elems[len(s.elems)-1] s.elems = s.elems[:len(s.elems)-1] return t } func (s *stack[T]) peek() T { if len(s.elems) == 0 { panic(s.name + " stack is empty") } return s.elems[len(s.elems)-1] } type operator string type eval struct { stackNum stack[Num] stackOp stack[operator] funcMap map[string]func([]Num) Num } func newEval() *eval { e := &eval{} e.stackNum.name = "num" e.stackOp.name = "op" return e } func toNum(v any) (Num, error) { switch v := v.(type) { case string: if strings.Contains(v, ".") { n, err := strconv.ParseFloat(v, 64) if err != nil { return Num{n}, err } return Num{n}, nil } n, err := strconv.ParseInt(v, 10, 64) if err != nil { return Num{n}, err } return Num{n}, nil case float32, float64: n, _ := util.ToFloat64(v) return Num{n}, nil default: n, err := util.ToInt64(v) if err != nil { return Num{n}, err } return Num{n}, nil } } func truth(b bool) int64 { if b { return int64(1) } return int64(0) } func applyOp2Generic[T int64 | float64](op operator, n1, n2 T) Num { switch op { case "+": return Num{n1 + n2} case "-": return Num{n1 - n2} case "*": return Num{n1 * n2} case "/": return Num{n1 / n2} case "==": return Num{truth(n1 == n2)} case "!=": return Num{truth(n1 != n2)} case "<": return Num{truth(n1 < n2)} case "<=": return Num{truth(n1 <= n2)} case ">": return Num{truth(n1 > n2)} case ">=": return Num{truth(n1 >= n2)} case "and": t1, _ := util.ToFloat64(n1) t2, _ := util.ToFloat64(n2) return Num{truth(t1 != 0 && t2 != 0)} case "or": t1, _ := util.ToFloat64(n1) t2, _ := util.ToFloat64(n2) return Num{truth(t1 != 0 || t2 != 0)} } panic("unknown operator: " + string(op)) } func applyOp2(op operator, n1, n2 Num) Num { float := false if _, ok := n1.Value.(float64); ok { float = true } else if _, ok = n2.Value.(float64); ok { float = true } if float { f1, _ := util.ToFloat64(n1.Value) f2, _ := util.ToFloat64(n2.Value) return applyOp2Generic(op, f1, f2) } return applyOp2Generic(op, n1.Value.(int64), n2.Value.(int64)) } func toOp(v any) (operator, error) { if v, ok := v.(string); ok { return operator(v), nil } return "", fmt.Errorf(`unsupported token type "%T"`, v) } func (op operator) hasOpenBracket() bool { return strings.HasSuffix(string(op), "(") // it's used to support functions like "sum(" } func (op operator) isComma() bool { return op == "," } func (op operator) isCloseBracket() bool { return op == ")" } type ExprError struct { msg string tokens []any err error } func (err ExprError) Error() string { sb := strings.Builder{} sb.WriteString(err.msg) sb.WriteString(" [ ") for _, token := range err.tokens { _, _ = fmt.Fprintf(&sb, `"%v" `, token) } sb.WriteString("]") if err.err != nil { sb.WriteString(": ") sb.WriteString(err.err.Error()) } return sb.String() } func (err ExprError) Unwrap() error { return err.err } func (e *eval) applyOp() { op := e.stackOp.pop() if op == "not" { num := e.stackNum.pop() i, _ := util.ToInt64(num.Value) e.stackNum.push(Num{truth(i == 0)}) } else if op.hasOpenBracket() || op.isCloseBracket() || op.isComma() { panic(fmt.Sprintf("incomplete sub-expression with operator %q", op)) } else { num2 := e.stackNum.pop() num1 := e.stackNum.pop() e.stackNum.push(applyOp2(op, num1, num2)) } } func (e *eval) exec(tokens ...any) (ret Num, err error) { defer func() { if r := recover(); r != nil { rErr, ok := r.(error) if !ok { rErr = fmt.Errorf("%v", r) } err = ExprError{"invalid expression", tokens, rErr} } }() for _, token := range tokens { n, err := toNum(token) if err == nil { e.stackNum.push(n) continue } op, err := toOp(token) if err != nil { return Num{}, ExprError{"invalid expression", tokens, err} } switch { case op.hasOpenBracket(): e.stackOp.push(op) case op.isCloseBracket(), op.isComma(): var stackTopOp operator for len(e.stackOp.elems) > 0 { stackTopOp = e.stackOp.peek() if stackTopOp.hasOpenBracket() || stackTopOp.isComma() { break } e.applyOp() } if op.isCloseBracket() { nums := []Num{e.stackNum.pop()} for !e.stackOp.peek().hasOpenBracket() { stackTopOp = e.stackOp.pop() if !stackTopOp.isComma() { return Num{}, ExprError{"bracket doesn't match", tokens, nil} } nums = append(nums, e.stackNum.pop()) } for i, j := 0, len(nums)-1; i < j; i, j = i+1, j-1 { nums[i], nums[j] = nums[j], nums[i] // reverse nums slice, to get the right order for arguments } stackTopOp = e.stackOp.pop() fn := string(stackTopOp[:len(stackTopOp)-1]) if fn == "" { if len(nums) != 1 { return Num{}, ExprError{"too many values in one bracket", tokens, nil} } e.stackNum.push(nums[0]) } else if f, ok := e.funcMap[fn]; ok { e.stackNum.push(f(nums)) } else { return Num{}, ExprError{"unknown function: " + fn, tokens, nil} } } else { e.stackOp.push(op) } default: for len(e.stackOp.elems) > 0 && len(e.stackNum.elems) > 0 { stackTopOp := e.stackOp.peek() if stackTopOp.hasOpenBracket() || stackTopOp.isComma() || precedence(stackTopOp, op) < 0 { break } e.applyOp() } e.stackOp.push(op) } } for len(e.stackOp.elems) > 0 && !e.stackOp.peek().isComma() { e.applyOp() } if len(e.stackNum.elems) != 1 { return Num{}, ExprError{fmt.Sprintf("expect 1 value as final result, but there are %d", len(e.stackNum.elems)), tokens, nil} } return e.stackNum.pop(), nil } func precedence(op1, op2 operator) int { p1 := opPrecedence[string(op1)] p2 := opPrecedence[string(op2)] if p1 == 0 { panic("unknown operator precedence: " + string(op1)) } else if p2 == 0 { panic("unknown operator precedence: " + string(op2)) } return p1 - p2 } func castFloat64(nums []Num) bool { hasFloat := false for _, num := range nums { if _, hasFloat = num.Value.(float64); hasFloat { break } } if hasFloat { for i, num := range nums { if _, ok := num.Value.(float64); !ok { f, _ := util.ToFloat64(num.Value) nums[i] = Num{f} } } } return hasFloat } func fnSum(nums []Num) Num { if castFloat64(nums) { var sum float64 for _, num := range nums { sum += num.Value.(float64) } return Num{sum} } var sum int64 for _, num := range nums { sum += num.Value.(int64) } return Num{sum} } // Expr evaluates the given expression tokens and returns the result. // It supports the following operators: +, -, *, /, and, or, not, ==, !=, >, >=, <, <=. // Non-zero values are treated as true, zero values are treated as false. // If no error occurs, the result is either an int64 or a float64. // If all numbers are integer, the result is an int64, otherwise if there is any float number, the result is a float64. func Expr(tokens ...any) (Num, error) { e := newEval() e.funcMap = map[string]func([]Num) Num{"sum": fnSum} return e.exec(tokens...) }