mirror of
https://github.com/immich-app/immich.git
synced 2025-07-13 20:38:46 +02:00
chore(ml): installable package (#17153)
* app -> immich_ml * fix test ci * omit file name * add new line * add new line
This commit is contained in:
parent
f7d730eb05
commit
84c35e35d6
31 changed files with 347 additions and 316 deletions
machine-learning/immich_ml
257
machine-learning/immich_ml/main.py
Normal file
257
machine-learning/immich_ml/main.py
Normal file
|
@ -0,0 +1,257 @@
|
|||
import asyncio
|
||||
import gc
|
||||
import os
|
||||
import signal
|
||||
import threading
|
||||
import time
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from contextlib import asynccontextmanager
|
||||
from functools import partial
|
||||
from typing import Any, AsyncGenerator, Callable, Iterator
|
||||
from zipfile import BadZipFile
|
||||
|
||||
import orjson
|
||||
from fastapi import Depends, FastAPI, File, Form, HTTPException
|
||||
from fastapi.responses import ORJSONResponse, PlainTextResponse
|
||||
from onnxruntime.capi.onnxruntime_pybind11_state import InvalidProtobuf, NoSuchFile
|
||||
from PIL.Image import Image
|
||||
from pydantic import ValidationError
|
||||
from starlette.formparsers import MultiPartParser
|
||||
|
||||
from immich_ml.models import get_model_deps
|
||||
from immich_ml.models.base import InferenceModel
|
||||
from immich_ml.models.transforms import decode_pil
|
||||
|
||||
from .config import PreloadModelData, log, settings
|
||||
from .models.cache import ModelCache
|
||||
from .schemas import (
|
||||
InferenceEntries,
|
||||
InferenceEntry,
|
||||
InferenceResponse,
|
||||
ModelFormat,
|
||||
ModelIdentity,
|
||||
ModelTask,
|
||||
ModelType,
|
||||
PipelineRequest,
|
||||
T,
|
||||
)
|
||||
|
||||
MultiPartParser.max_file_size = 2**26 # spools to disk if payload is 64 MiB or larger
|
||||
|
||||
model_cache = ModelCache(revalidate=settings.model_ttl > 0)
|
||||
thread_pool: ThreadPoolExecutor | None = None
|
||||
lock = threading.Lock()
|
||||
active_requests = 0
|
||||
last_called: float | None = None
|
||||
|
||||
|
||||
@asynccontextmanager
|
||||
async def lifespan(_: FastAPI) -> AsyncGenerator[None, None]:
|
||||
global thread_pool
|
||||
log.info(
|
||||
(
|
||||
"Created in-memory cache with unloading "
|
||||
f"{f'after {settings.model_ttl}s of inactivity' if settings.model_ttl > 0 else 'disabled'}."
|
||||
)
|
||||
)
|
||||
|
||||
try:
|
||||
if settings.request_threads > 0:
|
||||
# asyncio is a huge bottleneck for performance, so we use a thread pool to run blocking code
|
||||
thread_pool = ThreadPoolExecutor(settings.request_threads) if settings.request_threads > 0 else None
|
||||
log.info(f"Initialized request thread pool with {settings.request_threads} threads.")
|
||||
if settings.model_ttl > 0 and settings.model_ttl_poll_s > 0:
|
||||
asyncio.ensure_future(idle_shutdown_task())
|
||||
if settings.preload is not None:
|
||||
await preload_models(settings.preload)
|
||||
yield
|
||||
finally:
|
||||
log.handlers.clear()
|
||||
for model in model_cache.cache._cache.values():
|
||||
del model
|
||||
if thread_pool is not None:
|
||||
thread_pool.shutdown()
|
||||
gc.collect()
|
||||
|
||||
|
||||
async def preload_models(preload: PreloadModelData) -> None:
|
||||
log.info(f"Preloading models: clip:{preload.clip} facial_recognition:{preload.facial_recognition}")
|
||||
|
||||
async def load_models(model_string: str, model_type: ModelType, model_task: ModelTask) -> None:
|
||||
for model_name in model_string.split(","):
|
||||
model_name = model_name.strip()
|
||||
model = await model_cache.get(model_name, model_type, model_task)
|
||||
await load(model)
|
||||
|
||||
if preload.clip.textual is not None:
|
||||
await load_models(preload.clip.textual, ModelType.TEXTUAL, ModelTask.SEARCH)
|
||||
|
||||
if preload.clip.visual is not None:
|
||||
await load_models(preload.clip.visual, ModelType.VISUAL, ModelTask.SEARCH)
|
||||
|
||||
if preload.facial_recognition.detection is not None:
|
||||
await load_models(
|
||||
preload.facial_recognition.detection,
|
||||
ModelType.DETECTION,
|
||||
ModelTask.FACIAL_RECOGNITION,
|
||||
)
|
||||
|
||||
if preload.facial_recognition.recognition is not None:
|
||||
await load_models(
|
||||
preload.facial_recognition.recognition,
|
||||
ModelType.RECOGNITION,
|
||||
ModelTask.FACIAL_RECOGNITION,
|
||||
)
|
||||
|
||||
if preload.clip_fallback is not None:
|
||||
log.warning(
|
||||
"Deprecated env variable: 'MACHINE_LEARNING_PRELOAD__CLIP'. "
|
||||
"Use 'MACHINE_LEARNING_PRELOAD__CLIP__TEXTUAL' and "
|
||||
"'MACHINE_LEARNING_PRELOAD__CLIP__VISUAL' instead."
|
||||
)
|
||||
|
||||
if preload.facial_recognition_fallback is not None:
|
||||
log.warning(
|
||||
"Deprecated env variable: 'MACHINE_LEARNING_PRELOAD__FACIAL_RECOGNITION'. "
|
||||
"Use 'MACHINE_LEARNING_PRELOAD__FACIAL_RECOGNITION__DETECTION' and "
|
||||
"'MACHINE_LEARNING_PRELOAD__FACIAL_RECOGNITION__RECOGNITION' instead."
|
||||
)
|
||||
|
||||
|
||||
def update_state() -> Iterator[None]:
|
||||
global active_requests, last_called
|
||||
active_requests += 1
|
||||
last_called = time.time()
|
||||
try:
|
||||
yield
|
||||
finally:
|
||||
active_requests -= 1
|
||||
|
||||
|
||||
def get_entries(entries: str = Form()) -> InferenceEntries:
|
||||
try:
|
||||
request: PipelineRequest = orjson.loads(entries)
|
||||
without_deps: list[InferenceEntry] = []
|
||||
with_deps: list[InferenceEntry] = []
|
||||
for task, types in request.items():
|
||||
for type, entry in types.items():
|
||||
parsed: InferenceEntry = {
|
||||
"name": entry["modelName"],
|
||||
"task": task,
|
||||
"type": type,
|
||||
"options": entry.get("options", {}),
|
||||
}
|
||||
dep = get_model_deps(parsed["name"], type, task)
|
||||
(with_deps if dep else without_deps).append(parsed)
|
||||
return without_deps, with_deps
|
||||
except (orjson.JSONDecodeError, ValidationError, KeyError, AttributeError) as e:
|
||||
log.error(f"Invalid request format: {e}")
|
||||
raise HTTPException(422, "Invalid request format.")
|
||||
|
||||
|
||||
app = FastAPI(lifespan=lifespan)
|
||||
|
||||
|
||||
@app.get("/")
|
||||
async def root() -> ORJSONResponse:
|
||||
return ORJSONResponse({"message": "Immich ML"})
|
||||
|
||||
|
||||
@app.get("/ping")
|
||||
def ping() -> PlainTextResponse:
|
||||
return PlainTextResponse("pong")
|
||||
|
||||
|
||||
@app.post("/predict", dependencies=[Depends(update_state)])
|
||||
async def predict(
|
||||
entries: InferenceEntries = Depends(get_entries),
|
||||
image: bytes | None = File(default=None),
|
||||
text: str | None = Form(default=None),
|
||||
) -> Any:
|
||||
if image is not None:
|
||||
inputs: Image | str = await run(lambda: decode_pil(image))
|
||||
elif text is not None:
|
||||
inputs = text
|
||||
else:
|
||||
raise HTTPException(400, "Either image or text must be provided")
|
||||
response = await run_inference(inputs, entries)
|
||||
return ORJSONResponse(response)
|
||||
|
||||
|
||||
async def run_inference(payload: Image | str, entries: InferenceEntries) -> InferenceResponse:
|
||||
outputs: dict[ModelIdentity, Any] = {}
|
||||
response: InferenceResponse = {}
|
||||
|
||||
async def _run_inference(entry: InferenceEntry) -> None:
|
||||
model = await model_cache.get(entry["name"], entry["type"], entry["task"], ttl=settings.model_ttl)
|
||||
inputs = [payload]
|
||||
for dep in model.depends:
|
||||
try:
|
||||
inputs.append(outputs[dep])
|
||||
except KeyError:
|
||||
message = f"Task {entry['task']} of type {entry['type']} depends on output of {dep}"
|
||||
raise HTTPException(400, message)
|
||||
model = await load(model)
|
||||
output = await run(model.predict, *inputs, **entry["options"])
|
||||
outputs[model.identity] = output
|
||||
response[entry["task"]] = output
|
||||
|
||||
without_deps, with_deps = entries
|
||||
await asyncio.gather(*[_run_inference(entry) for entry in without_deps])
|
||||
if with_deps:
|
||||
await asyncio.gather(*[_run_inference(entry) for entry in with_deps])
|
||||
if isinstance(payload, Image):
|
||||
response["imageHeight"], response["imageWidth"] = payload.height, payload.width
|
||||
|
||||
return response
|
||||
|
||||
|
||||
async def run(func: Callable[..., T], *args: Any, **kwargs: Any) -> T:
|
||||
if thread_pool is None:
|
||||
return func(*args, **kwargs)
|
||||
partial_func = partial(func, *args, **kwargs)
|
||||
return await asyncio.get_running_loop().run_in_executor(thread_pool, partial_func)
|
||||
|
||||
|
||||
async def load(model: InferenceModel) -> InferenceModel:
|
||||
if model.loaded:
|
||||
return model
|
||||
|
||||
def _load(model: InferenceModel) -> InferenceModel:
|
||||
if model.load_attempts > 1:
|
||||
raise HTTPException(500, f"Failed to load model '{model.model_name}'")
|
||||
with lock:
|
||||
try:
|
||||
model.load()
|
||||
except FileNotFoundError as e:
|
||||
if model.model_format == ModelFormat.ONNX:
|
||||
raise e
|
||||
log.warning(
|
||||
f"{model.model_format.upper()} is available, but model '{model.model_name}' does not support it.",
|
||||
exc_info=e,
|
||||
)
|
||||
model.model_format = ModelFormat.ONNX
|
||||
model.load()
|
||||
return model
|
||||
|
||||
try:
|
||||
return await run(_load, model)
|
||||
except (OSError, InvalidProtobuf, BadZipFile, NoSuchFile):
|
||||
log.warning(f"Failed to load {model.model_type.replace('_', ' ')} model '{model.model_name}'. Clearing cache.")
|
||||
model.clear_cache()
|
||||
return await run(_load, model)
|
||||
|
||||
|
||||
async def idle_shutdown_task() -> None:
|
||||
while True:
|
||||
log.debug("Checking for inactivity...")
|
||||
if (
|
||||
last_called is not None
|
||||
and not active_requests
|
||||
and not lock.locked()
|
||||
and time.time() - last_called > settings.model_ttl
|
||||
):
|
||||
log.info("Shutting down due to inactivity.")
|
||||
os.kill(os.getpid(), signal.SIGINT)
|
||||
break
|
||||
await asyncio.sleep(settings.model_ttl_poll_s)
|
Loading…
Add table
Add a link
Reference in a new issue