mirror of
https://github.com/immich-app/immich.git
synced 2025-07-09 09:12:57 +02:00
chore(ml): installable package (#17153)
* app -> immich_ml * fix test ci * omit file name * add new line * add new line
This commit is contained in:
parent
f7d730eb05
commit
84c35e35d6
31 changed files with 347 additions and 316 deletions
machine-learning/immich_ml/sessions/rknn
91
machine-learning/immich_ml/sessions/rknn/rknnpool.py
Normal file
91
machine-learning/immich_ml/sessions/rknn/rknnpool.py
Normal file
|
@ -0,0 +1,91 @@
|
|||
# This code is from leafqycc/rknn-multi-threaded
|
||||
# Following Apache License 2.0
|
||||
|
||||
import logging
|
||||
from concurrent.futures import Future, ThreadPoolExecutor
|
||||
from pathlib import Path
|
||||
from queue import Queue
|
||||
from typing import Callable
|
||||
|
||||
import numpy as np
|
||||
from numpy.typing import NDArray
|
||||
|
||||
from immich_ml.config import log
|
||||
from immich_ml.models.constants import RKNN_COREMASK_SUPPORTED_SOCS, RKNN_SUPPORTED_SOCS
|
||||
|
||||
|
||||
def get_soc(device_tree_path: Path | str) -> str | None:
|
||||
try:
|
||||
with Path(device_tree_path).open() as f:
|
||||
device_compatible_str = f.read()
|
||||
for soc in RKNN_SUPPORTED_SOCS:
|
||||
if soc in device_compatible_str:
|
||||
return soc
|
||||
log.warning("Device is not supported for RKNN")
|
||||
except OSError as e:
|
||||
log.warning(f"Could not read {device_tree_path}. Reason: %s", e)
|
||||
return None
|
||||
|
||||
|
||||
soc_name = None
|
||||
is_available = False
|
||||
try:
|
||||
from rknnlite.api import RKNNLite
|
||||
|
||||
soc_name = get_soc("/proc/device-tree/compatible")
|
||||
is_available = soc_name is not None
|
||||
except ImportError:
|
||||
log.debug("RKNN is not available")
|
||||
|
||||
|
||||
def init_rknn(model_path: str) -> "RKNNLite":
|
||||
if not is_available:
|
||||
raise RuntimeError("rknn is not available!")
|
||||
rknn_lite = RKNNLite()
|
||||
rknn_lite.rknn_log.logger.setLevel(logging.ERROR)
|
||||
ret = rknn_lite.load_rknn(model_path)
|
||||
if ret != 0:
|
||||
raise RuntimeError("Failed to load RKNN model")
|
||||
|
||||
if soc_name in RKNN_COREMASK_SUPPORTED_SOCS:
|
||||
ret = rknn_lite.init_runtime(core_mask=RKNNLite.NPU_CORE_AUTO)
|
||||
else:
|
||||
ret = rknn_lite.init_runtime() # Please do not set this parameter on other platforms.
|
||||
|
||||
if ret != 0:
|
||||
raise RuntimeError("Failed to inititalize RKNN runtime environment")
|
||||
|
||||
return rknn_lite
|
||||
|
||||
|
||||
class RknnPoolExecutor:
|
||||
def __init__(
|
||||
self,
|
||||
model_path: str,
|
||||
tpes: int,
|
||||
func: Callable[["RKNNLite", list[NDArray[np.float32]]], list[NDArray[np.float32]]],
|
||||
) -> None:
|
||||
self.tpes = tpes
|
||||
self.queue: Queue[Future[list[NDArray[np.float32]]]] = Queue()
|
||||
self.rknn_pool = [init_rknn(model_path) for _ in range(tpes)]
|
||||
self.pool = ThreadPoolExecutor(max_workers=tpes)
|
||||
self.func = func
|
||||
self.num = 0
|
||||
|
||||
def put(self, inputs: list[NDArray[np.float32]]) -> None:
|
||||
self.queue.put(self.pool.submit(self.func, self.rknn_pool[self.num % self.tpes], inputs))
|
||||
self.num += 1
|
||||
|
||||
def get(self) -> list[NDArray[np.float32]] | None:
|
||||
if self.queue.empty():
|
||||
return None
|
||||
fut = self.queue.get()
|
||||
return fut.result()
|
||||
|
||||
def release(self) -> None:
|
||||
self.pool.shutdown()
|
||||
for rknn_lite in self.rknn_pool:
|
||||
rknn_lite.release()
|
||||
|
||||
def __del__(self) -> None:
|
||||
self.release()
|
Loading…
Add table
Add a link
Reference in a new issue